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Abstract

Sparsely-activated neural networks with condi-
tional computation learn to route their inputs
through different “expert” subnetworks, provid-
ing a strong structural prior and reducing com-
putational costs. Despite their possible benefits,
models with learned routing often underperform
their parameter-matched densely-activated coun-
terparts as well as models that use non-learned
heuristic routing strategies. In this paper, we
hypothesize that these shortcomings stem from
the gradient estimation techniques used to train
sparsely activated models with non-differentiable
discrete routing decisions. To address this is-
sue, we introduce Soft Merging of Experts with
Adaptive Routing (SMEAR), which avoids dis-
crete routing by using a single “merged” expert
constructed via a weighted average of the experts’
parameters. By routing activations through a sin-
gle merged expert, SMEAR does not incur an
increase in computational costs and facilitates
standard gradient-based training. We empirically
validate that the routing strategies learned via
typical gradient estimation techniques underper-
form hand-designed heuristic strategies and that
SMEAR outperforms both. Furthermore, we pro-
vide qualitative analysis demonstrating that the
experts learned via SMEAR exhibit a significant
amount of specialization.

1. Introduction
Neural networks typically use all of their parameters to
process an example. This means that the computational cost
of a neural network is often directly related to the number of
parameters it has. However, there are cases where it might
be appropriate to use a model architecture where different
parts of the model are active for different inputs. Such an
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architecture can decouple the computational cost of a model
from the number of parameters that it has. This possibility
is increasingly useful given the current trend of scaling up
models (Kaplan et al., 2020) because there may be cases
where it is beneficial to train a model with more parameters
but it is prohibitively expensive to train a typical densely-
activated neural network (Fedus et al., 2021). Separately,
specializing different parts of the model to different types
of data may reduce interference and allocate capacity more
effectively across downstream tasks (Sanh et al., 2021; Wei
et al., 2021; Zamir et al., 2018; Bao et al., 2021) or languages
(Pires et al., 2019; Liu et al., 2020; Xue et al., 2020).

Conditional computation techniques provide a possible way
to attack these issues because they allow the network to
selectively apply only a subset of its parameters to an in-
put. A common way to use conditional computation is to
introduce specialized subnetworks called experts that are
controlled by routers that decide which experts should be
active. As a result, a model with many experts can have a
large number of parameters while incurring a lower com-
putational cost by selecting a small number of experts to
activate. When the model is trained with diverse data, this
form of conditional computation can allow experts to spe-
cialize to different types of inputs while allowing flexible
knowledge sharing across experts (Ma et al., 2019). How-
ever, because routing involves making a discrete decision as
to which expert to use, the loss on final prediction cannot
back-propagate though the routing decision to update the
router. Consequently, models with conditional computation
often require gradient estimation techniques for training
(Clark et al., 2022; Fedus et al., 2021; Bengio et al., 2013).

In practice, past work has shown models with conditional
computation do not always learn effective routing strategies.
For example, Mittal et al. (2022) investigate models with a
continuous router in a controlled setting and find the models
do not route examples from the same group to the same
experts, and perform poorly compared to models with or-
acle routing. However, models with task-specific modules
(Gururangan et al., 2021; Kudugunta et al., 2021) provide
evidence that it is possible to train performant models with
specialized experts. As an extreme example, Roller et al.
(2021) achieves results comparable to learned routing with
a fixed random routing. Relatedly, Fedus et al. (2021) find
the gain from scaling up parameters by 30× with a sparsely
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Figure 1. The discrete routing decisions commonly used in models that route activations among experts requires the use of gradient
estimation (left). We propose SMEAR (right), which uses a given router’s distribution to average the parameters of the corresponding
experts and then routes the input through a single merged expert. SMEAR achieves better performance than models with discrete routing,
can be trained with standard backpropagation, and does not incur significant additional computational costs compared to discrete routing.

activated model is smaller than scaling up both parameters
and FLOPs by 3× in a dense model. As a possible expla-
nation, Clark et al. (2022) characterize how models with
conditional computation improve with scale and find a detri-
mental term that scales with the product of the log number
of experts and active parameters. Consequently, increasing
the number of experts yields limited returns and existing
methods for training conditional computation models may
only be helpful when the number of active parameters is
moderate.

In this work, we hypothesize that issues with conditional
computation stem from difficulties with gradient estimation.
Specifically, we design experimental settings where we can
compare learned routing to a performant hand-designed
heuristic routing scheme. We find that all gradient estima-
tion techniques that we consider produce models that under-
perform the heuristic routing, even in cases where a better
routing strategy than the hand-designed one is possible. To
address this shortcoming, we introduce Soft Merging of
Experts with Adaptive Routing (SMEAR), a method for
training models with specialized experts and learned rout-
ing. SMEAR works by using the router’s distribution over
experts to compute a weighted average of the parameters of
the individual experts. Activations are then sent through the
merged expert, which results in a similar computational cost
to discrete routing to a single expert. However, the fact that
all components of SMEAR are fully differentiable enables
standard gradient-based training. Empirically, we show
that SMEAR significantly outperforms discrete routing solu-
tions found via gradient estimation as well as hand-designed
heuristic routing schemes without incurring a significant in-
crease in computational costs. We also qualitatively validate
that the experts learned by SMEAR specialize to different
types of inputs. Put together, our results show that SMEAR
provides an effective alternative for models that use adaptive
routing among expert subnetworks.

After providing the background on conditional computation

models and gradient estimators in the following section,
we define SMEAR in Section 3. We then describe our
experimental findings in Section 4, discuss related works in
Section 5 and conclude in Section 6.

2. Background
To provide the necessary background for our work, we first
explain how sparsely activated neural networks use condi-
tional computation, then discuss gradient estimators that
enable learning routing strategies. In addition, we define the
notion of “heuristic” routing strategies in settings where a
performant routing can be hand-designed.

2.1. Routing Among Experts

In models that use discrete routing among experts (i.e.
subnetwork modules), experts are typically organized into
blocks and are incorporated into deep neural network ar-
chitectures. An expert routing block B comprises a set of
N experts {f1, f2, . . . fN} and a router R. Experts in the
same block accept inputs of the same dimensionality. Given
a hidden-state representation u, the output of the i-th ex-
pert with parameters θi is fi(u, θi). In our work, the router
chooses a single fi to process the input of the block (though
sparsely-activated models in other work may use more than
one expert (Shazeer et al., 2017; Du et al., 2022)). Thus we
can use the block B like any multi-layer building block in a
neural network.

2.2. Gradient Estimators

In sparsely activated models that involve discrete adaptive
routing, it is not possible to train the router’s parameters
with standard gradient-based learning. Fortunately, gradient
estimators can provide approximate gradients to the router
parameters. There are a few common designs shared by
models that use gradient estimators to train routers. Their
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router R often applies a lightweight network to some inter-
mediate hidden states v in the model rather than the original
input to the full model. The lightweight routing network
yields a probability distribution P (v) over all the N experts.
Different gradient estimators vary in how they make the
routing decision from P and how they construct the output
from the chosen expert. Additionally, some estimators may
introduce additional loss terms.

REINFORCE Gradients can be estimated through dis-
crete operations through reinforcement learning techniques
(Schulman et al., 2015; Bengio et al., 2013). In reinforce-
ment learning, a policy loss is used to train an agent to learn
optimal actions in an environment. In this paper, we experi-
ment with the REINFORCE algorithm which computes the
policy loss as log(π)r where r denotes the received reward
for taking an action whose assigned probability is π. When
applied to models that use discrete routing among experts,
the goal is to train the model to choose which expert to
use to process a given input. Here, the router R acts an
agent that samples an expert to use according to the routing
probabiltiies. In order to train such a router, the router’s
assigned probability to the sampled expert is used as π and
the negative of the model’s loss is used as the reward r.
The router is therefore trained to pick experts that maxi-
mize the reward which, in turn, minimizes the loss. The
REINFORCE estimator often suffers from high variance
because of the sampling operation. This motivates the use
of baselines, which reduce variance without changing the
optimal solution. In our work, we use a baseline introduced
by Clark et al. (2022), where the baseline b is generated by
a small neural network with a single hidden layer that takes
as input v and is trained with Huber loss. The overall loss
function is then

L = Ei∼P (v)α logP (v)i(r − b)− (1)
βP (v) logP (v) + γLHuber(r, b) (2)

where P (v) is the routing probability distribution and α, β,
and γ are hyperparameters that correspond to policy gradi-
ent weight, policy entropy weight, and value loss weight.
Finally, the output of the block B is just fi(u, θi).

Straight Through Gumbel-Softmax (ST-Gumbel) The
Gumbel-Softmax trick (Jang et al., 2016) provides a con-
tinuous differentiable approximation to sampling from a
categorical distribution like the one produced by a router.
Specifically, Gumbel noise is added to the logits of the dis-
tribution and a temperature scale is applied in the softmax
operation. Denoting gi ∼ Gumbel(0, 1) and τ as the tem-
perature, the Gumbel-Softmax trick produces the following
modified distribution:

P̂ (v)i =
exp((log(P (v)i) + gi)/τ)∑N
j=1 exp((log(P (v)i) + gi)/τ)

(3)

The expert fi with the highest assigned probability is chosen
by applying an argmax operation over this distribution. In
order to approximate gradients through the argmax opera-
tion, we use the Straight-Through estimator which replaces
fi(u, θi) with (1 − sg[P̂ (v)i] + P̂ (v)i)fi(u, θi) where sg
stands for the stop-gradient operator. During forward pass,
the multiplier for fi(u, θi) becomes 1 and the multiplier
receives gradients for the term P̂ (v)i in the backward pass.
In practice, the temperature τ is gradually annealed from
a high to low value so that the approximated samples are
more and more similar to discrete samples.

Top-k Shazeer et al. (2017) propose a gradient estima-
tion scheme where the router sends the input through the
k experts that are assigned the highest probability. Fe-
dus et al. (2021) later found that this router could be
used effectively when k = 1. Specifically, the estima-
tor selects the subnetwork with the highest probability and
scales its output using its corresponding routing probability.
The output of the block is therefore P (v)ifi(u, θi), where
i = argmaxi(P (v)).

2.3. Heuristic Routing

As a point of comparison for techniques that learn adaptive
routing, we experiment with three baseline routing strategies
that do not require a trained router.

Tag Routing If we have prior knowledge about the data
that a model will be applied to, it can be possible to hand-
design a heuristic routing strategy for choosing which ex-
perts to use for a given example based on data properties.
Tag routing takes advantage of tags associated with the ex-
amples (such as its domain or task in multitask learning)
and associates each expert in a given expert routing block
with a particular tag. In this work, we assume each example
has a single tag. As such, examples are routed to the expert
corresponding to their tag.

Hash Routing Roller et al. (2021) propose hash routing,
which uses a fixed hashing function to determine which ex-
pert to use for a given example. Specifically, each example
is assigned a random expert choice in each expert routing
block which is used consistently over the course of training.
This approach disregards any shared characteristics across
examples.

Monolithic Routing As a baseline, we consider models
where each expert routing block only has a single expert.
This provides an important point of comparison as it is a
degenerate solution that can be found with learned routing
by having the router always choose the same expert for all
examples.
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3. Soft Merging of Experts with Adaptive
Routing

As we will later show in Section 4, the gradient estimation
techniques used to train models with discrete routing among
experts often fail to produce performant routing strategies.
Our goal in this work is therefore to explore whether it
is possible to train models with adaptive routing among
experts without resorting to gradient estimation. Ideally, we
would be able to design an expert and router architecture
that facilitates standard gradient-based training so that the
model could be trained end-to-end in a standard fashion.

Ensemble Routing One simple idea would be to pass
the input of a given expert routing block through every ex-
pert, and then compute an average of the experts’ outputs
weighted according the router’s distribution, i.e. exactly
computing Ei∼P (v)fi(u, θi). We refer to this approach as
an ensemble routing strategy since it corresponds to using
the ensemble prediction of the experts. Since the operations
involved in computing the average are all differentiable,
using an ensemble routing strategy would allow for exact
computation of gradients and end-to-end-learning. Unfortu-
nately, such an approach would incur a significant increase
in computational costs because it requires computing the
output of every expert rather than a single expert.

Merging Experts To explore an alternative fully-
differentiable expert routing block, we take inspiration from
recent work on merging models (Matena & Raffel, 2021;
Wortsman et al., 2022b;c; Choshen et al., 2022; Don-Yehiya
et al., 2022). These works have shown that averaging the
parameters of models that share a common architecture can
often produce an aggregate model that shares the capabili-
ties of the individual models. For example, Wortsman et al.
(2022b) found that averaging the weights of multiple fine-
tuned models produced a single model that performs com-
parably to an ensemble of the models. Motivated by these
findings, we propose Soft Merging of Experts with Adaptive
Routing (SMEAR), which constructs a single merged expert
whose parameters are computed as the weighted average
of the experts within a routing block. Each expert’s weight
is set according to the corresponding routing probability
generated by the router. In SMEAR, the input to the routing
block is fed into the merged expert, whose output is used as
the output of the block. SMEAR implicitly assumes that all
experts in the routing block share an identical architecture
(thereby inducing a natural one-to-one mapping between
parameters in each expert). To the best of our knowledge,
all past works focused on routing among experts use experts
with identical architecture.

More explicitly, we define SMEAR as computing the output
of an expert routing block using a merged expert computed
as f̄(u,

∑
i P (v)iθi). The merged expert shares the same

architecture with the individual experts fi. Notably, the
input of the routing block is only ever processed by f̄ ; ac-
tivations are never fed to any of the individual experts. To
break symmetry, all experts are randomly initialized with
different parameter values. Importantly, all operations in
SMEAR are fully differentiable, SMEAR enables standard
gradient-based end-to-end learning. In addition, SMEAR re-
tains the ability to learn an adaptive routing strategy that can
intelligently route different examples to different experts.
We will later show qualitatively that this leads to meaningful
specialization of different experts in real-world experiments
(Section 4.3).

Computational Costs Importantly, SMEAR only ever
computes the output of a single expert. This suggests that
the computational costs of SMEAR could be comparable to
using discrete routing and significantly lower than ensemble
routing. However, we note that the averaging operation itself
incurs a nontrivial computational cost. To quantify this cost,
we focus on the common expert architecture comprising a
dense layer that projects from d-dimensional activations to a
m dimensional vector followed by a nonlinearity and finally
an additional dense layer projecting from m dimensions
back to d. For simplicity, we ignore the cost of the nonlin-
earity since it introduces a relatively small computational
cost. We focus on the setting where the input is a sequence
of length L so that the input to an expert routing block is a
sequence of activations of size L×d. In this case, computing
the output of a single expert incurs a computational cost of
approximately L× 4× d×m FLOPs and ensemble routing
with N experts would require N × L× 4× d×m FLOPs.
SMEAR also requires only L× 4× d×m to compute the
output of the merged expert, but must average together the
parameters of N experts. Computing this average once in-
curs an additional cost of approximately N × 2 × d ×m.
Some past work on models with discrete routing has the
router choose a different expert for each entry in the in-
put sequence of activations (e.g. Fedus et al., 2021; Lewis
et al., 2021; Roller et al., 2021). This would require com-
puting the expert average L times, which would make the
cost of SMEAR similar to that of ensemble routing. We
therefore focus on settings where models make a single rout-
ing choice for an entire input example (e.g. Shazeer et al.,
2017; Gururangan et al., 2021; Kudugunta et al., 2021; Ye
et al., 2022). This results in a total cost of approximately
(L× 4 +N × 2)× d×m for SMEAR. Consequently, as
long as L × 4 ≫ N × 2, SMEAR and discrete routing
have roughly the same computational costs. Furthermore,
we would expect SMEAR to be approximately N×L

N+L times
cheaper than ensemble routing. More concretely, we find in
Section 4.2 that the wall-clock time required to process an
example with SMEAR in real-world experiments is roughly
the same as using discrete routing and significant faster than
ensemble routing.
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4. Experiments
In order to thoroughly evaluate the effectiveness of SMEAR
in addressing the limitations of models that learn discrete
routing through gradient estimation, we perform experi-
ments in two real-world settings that differ in model ar-
chitecture and modality. We are particularly interested in
whether a given approach for learning routing outperforms
the heuristic routing strategies describe in Section 2.3. As
such, we focus on experimental settings where a performant
“tag routing” baseline can be designed, i.e. where we have
metadata that can be used to appropriate route examples.
Specifically, we experiment with fine-tuning T5 1.1 Base
(Raffel et al., 2020) on datasets from GLUE (Wang et al.,
2018) (referred to as T5-GLUE) and fine-tuning a ResNet18
(He et al., 2016) on DomainNet (Peng et al., 2019) (ResNet-
DomainNet). In these settings, we add experts to an existing
pre-trained backbone in the same way that Adapters are used
for parameter-efficient fine-tuning (Houlsby et al., 2019).

T5-GLUE In this scenario, we focus on training a T5
model (Raffel et al., 2020) on the GLUE meta-benchmark
(Wang et al., 2018) for natural language understanding.
GLUE consists of nine datasets ranging across sentimental
analysis (SST-2 (Socher et al., 2013)), acceptability judge-
ment (CoLA (Warstadt et al., 2019)), natural language in-
ference (MNLI (Williams et al., 2017), RTE (Bentivogli
et al., 2009)), semantic similarity (QQP1, MRPC (Dolan
& Brockett, 2005), STS-B (Cer et al., 2017)), question an-
swering (QNLI (Rajpurkar et al., 2016)), and commonsense
reasoning (WNLI (Levesque et al., 2012)). Following con-
vention, we exclude WNLI and use the remaining 8 datasets.
We use the prompted form of these datasets available in
PromptSource (Bach et al., 2022), maps each example into
a natural language request-and-response form. During train-
ing, we randomly select a prompt template for each ex-
ample from the PromptSource templates for the example’s
dataset and we evaluate each example using all of the datat-
set’s templates. We base our implementation on Mahabadi
et al. (2021) for splitting train, eval, and test sets of GLUE
datasets. When using tag routing, we consider the dataset of
each example as the tag. We use the pretrained T5 1.1 Base
model as the backbone and adapt the model in a way similar
to adding adapters (Houlsby et al., 2019) for a single task,
i.e. we keep all pretrained parameters frozen except for layer
normalization parameters and insert expert routing blocks af-
ter self-attention, feed-forward and cross-attention modules.
The T5 1.1 Base model has 12 Transformer layers in both
the encoder and decoder, resulting in a total of 12× 2 = 24
blocks in the encoder and 12 × 3 = 36 blocks in the de-
coder, totally 60 expert routing blocks. In each block, we
introduce eight experts (one for each dataset in GLUE). The

1https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs

Routing T5-GLUE ResNet-DomainNet

Tag 78.5 61.5
Tag+ 79.8 –
Hash 67.4 52.5
Monolithic 77.5 59.0

Top-k 77.9 60.0
ST-Gumbel 76.1 58.3
REINFORCE 78.4 59.8

SMEAR 82.5 62.0
Expert ensemble 82.8 62.5

Table 1. Average performance of models trained using different
routing strategies. Discrete routing strategies learned through
gradient estimators (Top-k, ST-Gumbel, REINFORCE) tend to
underperform tag-based heuristic routing but outperform degener-
ate strategies (Hash, Monolithic). SMEAR outperforms all other
routing strategies with comparable computational cost – an expert
ensemble routing strategy (greyed out) is significantly more expen-
sive (cf. Figure 2).

router architecture comprises a layer normalization layer,
a linear layer, and a softmax nonlinearity to generate the
routing probability distribution. During the forward pass,
each vector in the linear layer is rescaled using a separate
layernorm to avoid unbounded growth which would result in
the router consistently outputting a one-hot distribution. In
the encoder, the router takes as input the preceding hidden
states, which are averaged across the sequence and fed into
the router. In the decoder, the routers receive the average of
the encoder’s final hidden states instead of the decoder hid-
den states to prevent information leakage from later target
tokens to earlier target tokens. We also experimented with
expert dropout of 0.1, following Komatsuzaki et al. (2022)
where each expert is dropped with a probability of 0.1. Our
results indicate that expert dropout is beneficial for SMEAR
and Top-K methods, but not for other methods. This aligns
with our observation that these two methods have less ex-
ploration than REINFORCE and ST-Gumbel, as the latter
methods do sampling for exploration. Therefore, the results
presented in Table 1 include expert dropout for SMEAR and
the Top-K method. A detailed ablation of expert dropout
can be found in Table 2.

ResNet-DomainNet In this scenario, we focus on adapt-
ing an ImageNet pre-trained ResNet18 (He et al., 2016) to
datasets within DomainNet (Peng et al., 2019). DomainNet
is a collection of object recognition datasets that cover six
distinct domains that all share the same label space corre-
sponding to 345 object categories. We treat the domain of
each example as its tag. As in the T5-GLUE scenario, we
freeze the pretrained model, and insert eight expert routing
blocks after each of the eight residual layer groups in the

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
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Figure 2. Comparison of inference speed for various routing strategies in T5-GLUE (a) and ResNet-DomainNet (b). SMEAR has
comparable speed with that of discrete routing with estimators, whereas computing an ensemble of experts (“Ensemble”) is the slowest.

model. Each block includes six experts corresponding to
the number of domains. We use the same architecture for
routers as in T5-GLUE and feed average-pooled hidden
states into the router to compute the routing probability. Ex-
perts in this setting use batchnorm on their input instead of
layer norm in the output, following (Rebuffi et al., 2017).

In each scenario, we compare SMEAR to learned routing
using the gradient estimators from Section 2.2 and heuristic
routing strategies from Section 2.3. Full details of hyper-
parameters and training timings for each scenario are pre-
sented in Appendix C. For scenarios with multiple datasets,
we only provide the average performance across datasets
in the main paper due to space limitations. Full results are
provided in Appendix E.

4.1. Results

To assess the overall effectiveness of routing strategies
learned with SMEAR, we compare to the performance at-
tained by sparsely activated models trained with the gradient
estimators described in Section 2.2 and models with differ-
ent heuristic routing strategies described in Section 2.3. A
summary of our results is shown in Table 1. First, we find
that models using routing strategies learned through gra-
dient estimators do not outperform tag routing in either
settings. Specifically, the best-performing estimator (RE-
INFORCE) in T5-GLUE slightly underperforms tag rout-
ing and the best performing estimator (Top-k) in ResNet-
DomainNet underperforms tag routing by 1.5%. Learned
routing with estimators except ST-Gumbel do better than
hash and monolithic routing in both settings, which suggests
that estimators are learning nontrivial routing strategies that
are nevertheless less effective than tag routing. Pertinently,
in all experimental settings, SMEAR outperforms every
other routing strategy, including both routing learned by
gradient estimators and all heuristic routing strategies. In
particular, SMEAR achieves 4% improvement over tag rout-
ing in T5-GLUE and 0.5% improvement over tag routing in

ResNet-DomainNet. As an upper bound on performance, we
also compare SMEAR to expert ensembling (“Ensemble”)
which averages the outputs of all experts and incurs sig-
nificantly higher computational cost. SMEAR underforms
expert ensemble by 0.3% in T5-GLUE and 0.5% in ResNet-
DomainNet. Whether expert ensembling corresponds to an
attainable upper bound for other learned routing methods is
unclear since it makes use of more computation.

To get a better sense of the ways that learned routing can
outperform tag routing, we sought to design an improved tag
routing strategy. Based on prior results in transfer learning
on GLUE that show that intermediate- or multi-task train-
ing on MNLI and RTE can improve performance on RTE
(Phang et al., 2018; Devlin et al., 2018; Pruksachatkun et al.,
2020; Vu et al., 2020), we designed an additional tag-based
routing scheme (called “Tag+”), where examples from RTE
and MNLI are routed to the same expert in all the routing
blocks of the encoder. We find that SMEAR outperforms
the Tag+ strategy by 2.7%. This suggests that SMEAR may
be able to uncover and exploit the beneficial commonality
between the tasks for different examples without any super-
vision or metadata. We further explore the routing decisions
and expert specialization in Section 4.3 and find evidence
of emergent task-relevant structure in routing decisions.

4.2. Inference speed

To compare the inference speed of the various methods,
we measure the number of examples processed per second
during inference in both experimental settings as shown in
Figure 2. Monolithic routing has the fastest inference speed
as all examples utilize only one expert. Tag routing is slower
than Monolithic routing as the examples in a batch must be
routed to the corresponding experts based on tags. Learned
routing with gradient estimators operate similarly during
inference, selecting the expert with the highest probability.
For the sake of comparison, we compute using only one esti-
mator and refer to it as the Estimator method. The Estimator
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Figure 3. Average routing distributions produced by SMEAR for two routers from the T5-GLUE model (a) and two from the ResNet-
DomainNet model (b). For a given router, we average all routing distributions across all examples from a given dataset.

method has a slightly slower speed than tag routing due to
the additional computation required in the router. Despite
the slight overhead of averaging the weights in SMEAR,
we observe that its inference speed is almost identical to
that of routing with estimators. The Ensemble method per-
forms poorly in terms of speed, with a 1.2x slowdown in T5-
GLUE and 1.4x slowdown in ResNet-DomainNet compared
to SMEAR. In summary, the SMEAR method outperforms
heuristic routing and learned routing with estimators with
almost no significant change in inference speed. While the
Ensemble method has high performance, its high inference
cost makes it impractical for larger models.

4.3. Qualitative Analysis

In this section, we provide qualitative analysis of the routing
learned by SMEAR by visualizing the average router distri-
bution across all examples in a given dataset for every router
in each model. Figure 3 illustrates the routing distributions
for two routers from the model trained in T5-GLUE and
two from ResNet-DomainNet. For the T5-GLUE routers,
we observe significantly different behavior – one mainly
follows a tag routing-style strategy whereas the other routes
most datasets to the same expert. However, we note that the
tag-style router utilizes shared experts for RTE, MRPC, and
MNLI; notably, these tasks are somewhat similar in that they
all involve determining similarity among pairs of sentences.
In the monolitic-style router, STS-B (the only regression
task) and SST-2 (which has a distinct output vocabulary)
are given dedicated experts, and MNLI (a large and rela-
tively challenging dataset) is routed through many different
experts. More broadly, we highlight that there is generally
a great deal of sparsity in the learned routing distributions,
suggesting a significant amount of expert specialization. In
ResNet-DomainNet, we can see that examples from the
Quickdraw domain are routed to two specific experts in
both cases. Additionally, we observe that the router distri-
bution of the Painting and Real domains are highly corre-

lated. Other domains such as Clipart, Sketch seem to evenly
use experts. Interestingly, there is less expert specializa-
tion in the ResNet-DomainNet model, suggesting that there
may be more similarities between the individual domains
in DomainNet compared to the tasks in GLUE. Routing
distributions for all routers can be found in Appendix F.

5. Related Work
Models with Conditional Computation Various works
have investigated ways to circumvent the difficulties in rout-
ing in multi-task learning settings. For example, Deecke
et al. (2020); Hazimeh et al. (2021); Dua et al. (2021) start
training with most of the experts activated and gradually
introduce sparsity. Kudugunta et al. (2021); Ponti et al.
(2022); Ma et al. (2019); Gupta et al. (2022) group exam-
ples from the same task together and introduce task-specific
parameters in the router. Some works avoid learned routing
by hand-crafting heuristic routing strategies. Gururangan
et al. (2021) built sparsely activated language models where
different domains use separate experts. On an unknown
domain, the model assesses the experts’ fitness to combine
the experts. Tang et al. (2022); Pfeiffer et al. (2022; 2020)
specify assign experts based on task-related human knowl-
edge. Li et al. (2022a) demonstrate that models structured
as sparse mixture-of-experts generalize effectively to novel
domains, as compared to other domain generalization algo-
rithms in vision transformers. Our focus on settings where
performant routing schemes can be hand-designed takes
inspiration from this line of work.

Because sparsely activated models disentangle computation
and parameter count, significant effort has gone into lever-
aging conditional computation to create massive pre-trained
models with a feasible computation cost (Fedus et al., 2022;
Shazeer et al., 2017; Fedus et al., 2021; Du et al., 2022;
Zoph et al., 2022; Yu et al., 2022). Many works explore
different routing methods in this setting, with a major focus
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on balancing the load across experts (Lewis et al., 2021;
Zhou et al., 2022; Kool et al., 2021; Roller et al., 2021). An-
other line of work aims to introduce ways to convert trained
dense models into similar-sized sparse models with a lower
computational footprint (Lee-Thorp & Ainslie, 2022; Zhang
et al., 2022; Komatsuzaki et al., 2022). We are interested
in scaling up models using SMEAR in future work, but we
currently lack the computational resources to do so.

Gradient Estimation Techniques Many gradient estima-
tors have been proposed to produce approximate gradients
for learning discrete representations that involve sampling.
Our work uses a learned baseline from Clark et al. (2022)
to reduce the variance of the REINFORCE estimator. The
REBAR estimator (Tucker et al., 2017) adds a reparame-
terizable term to REINFORCE as a baseline that results in
a more effective unbiased estimator. This additional term
uses a relaxed sample similar to Gumbel-Softmax (Jang
et al., 2016). RELAX (Grathwohl et al., 2017) is similar to
REBAR but uses a learnable neural network for the reparam-
eterizable term. Kool et al. (2019) uses additional samples
from the policy as a built-in baseline for REINFORCE. Yin
& Zhou (2018) and Dong et al. (2020) use the idea of cou-
pling between multiple samples to reduce the variance of
the gradient estimator and are designed for binary latent
variables. Dong et al. (2021) improve upon Yin & Zhou
(2018) and Dong et al. (2020) by extending the estimator
to categorical variables. In preliminary experiments, we
did not find any major gains from using more sophisticated
gradient estimation techniques, but designing gradient es-
timators with discrete routing in mind could yield more
performant routing strategies.

Issues with Conditional Computation Clark et al. (2022)
study the scaling laws of sparse language models and dis-
covered a computational cutoff above which no additional
benefits are observed. Relatedly, Du et al. (2022) observe
worse results when further scaling up the number of experts.
Chi et al. (2022) and Dai et al. (2022) discover the represen-
tation collapse and routing fluctuation issue, respectively.
Mittal et al. (2022) create a set of simple and modular data
distributions, and show that systems with modular architec-
ture can not find the most beneficial solution when trained
end-to-end. Ye et al. (2022) experiment with various de-
signs for multi-task learning with task-level routing and find
that the performance still cannot surpass simple multi-task
baselines. Our work demonstrates a possible way to avoid
many of these issues by using a fully differentiable routing
strategy that does not increase computational costs.

Weight Averaging Methods Our work takes inspiration
from prior work that utilizes parameter averaging as an
alternative to ensembling. For example, Wortsman et al.
(2022c); Ilharco et al. (2022) average the weights of a pre-

trained and a fine-tuned model to improve performance
on target tasks as well as robustness to distribution shift.
Choshen et al. (2022) similarly show that merging multiple
models fine-tuned on different datasets can provide a better
initialization than using the original pre-trained model for
further fine-tuning on new unseen datasets.

Model averaging is also a common step in distributed op-
timization, where it is widely used in federated learning
McMahan et al. (2017) and has recently been used for dis-
tributed fine-tuning (Wortsman et al., 2022a), multi-domain
training (Li et al., 2022b), and multitask training (Don-
Yehiya et al., 2022). There are also works that utilize differ-
ent styles of merging instead of weight averaging of param-
eters, such as reweighting parameters in accordance with
their approximate Fisher information (Matena & Raffel,
2021), aligning features by fitting a linear projection (Jin
et al., 2022), and permuting columns to account for permuta-
tion symmetries (Ainsworth et al., 2022). We are interested
in applying these more sophisticated merging methods to
SMEAR in future work.

6. Conclusion
In this work, we sought to address shortcomings of mod-
els with discrete routing among experts that lead them to
produce worse performance than heuristic non-learned rout-
ing. We hypothesized that these issues stem from the gra-
dient estimation techniques required to propagate gradients
through discrete routing decisions, and therefore focused on
designing an expert routing architecture that faciliated exact
gradients to be calculated. Our approach, called SMEAR,
works by computing a weighted average of expert parame-
ters where the weighting is set according to the output of
a learned router. We compared the performance of mod-
els using SMEAR to models that were trained via various
gradient estimation techniques to perform discrete routing.
In experimental settings covering different modalities and
model architectures, we found that SMEAR outperformed
all models with discrete routing as well as performant heur-
sitic routing strategies. Notably, this performance boost
comes with no increase in computational costs. Through
qualitative analysis, we further confirmed that the experts
learned in a model using SMEAR specialize to different
types of inputs while the router learns a nontrivial strategy
that exploits commonalities across different examples. In
future work, we are interested in exploring different expert
architectures (Liu et al., 2022; hu2) and improved merging
methods (Matena & Raffel, 2021; Ainsworth et al., 2022;
Jin et al., 2022). Given the poor scaling properties of models
with discrete routing (Clark et al., 2022), we would also be
excited to try out SMEAR in the same large-scale settings
where discrete routing has been used (Fedus et al., 2021;
Zoph et al., 2022; Du et al., 2022).
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A. Appendix.

B. Compute resources used
We provide details on the compute resources used in our experiments. All models were trained using a combination of
either 48GB A6000s or 24GB A5000s. The training time for each T5-GLUE experiment was approximately 72 hours with
Ensemble method taking 125 hours, while each ResNet-DomainNet experiment required approximately 11 hours of training.

C. Experiment Details
We provide details on the experimental setup and hyperparameter choices for the T5-GLUE and ResNet-DomainNet
experiments described in the main text.

C.1. T5-GLUE

In the T5-GLUE experiments, all T5 models were trained for 400k steps using a learning rate of 3e−4, with 2k warmup
steps, and batch size of 128. The AdamW optimizer was used with its default settings. We ran ST-Gumbel estimator with a τ
value of 10 and an anneal rate of 1e−6. For the REINFORCE estimator in Equation 1, we used the same values as in (Clark
et al., 2022), α = 1e−2, β = 5e−4, and γ = 1e−2. The adapters here use swish non-linearity in between. We concatenated
all 8 datasets of GLUE and perform multitask training.

C.2. ResNet-DomainNet

In the ResNet-DomainNet experiments, all ResNet models were trained for 100k steps with batch size of 128 and a learning
rate of 1e−3, with no warm up, using Adam optimizer. We used τ value of 10 and anneal rate of 1e−4 for the ST-Gumbel
estimator. The values of α, β, and γ for the REINFORCE estimators in Equation 1 are same as in T5-GLUE experiments.
The adapters also used swish non-linearity in between. All the domains from DomainNet were concatenated to perform
multitask training similar to T5-GLUE.

D. Expert dropout
Table 2 illustrates the impact of expert dropout on different learned routing methods. It is evident that SMEAR benefits
from an improvement of 3.8% on T5-GLUE, and Top-K benefits from an improvement of 0.3% and 0.2% on T5-GLUE
and ResNet-DomainNet respectively. Expert dropout is included for these two methods when discussed in the main text.
However, expert dropout negatively impacts the performance of ST-Gumbel and REINFORCE methods and thus, it is
excluded for these two methods in the main text.

Routing T5-GLUE ResNet-DomainNet

Top-k 77.6 59.8
w/ Expert dropout 0.1 77.9 (+0.3) 60.0 (+0.2)

ST-Gumbel 76.1 58.3
w/ Expert dropout 0.1 75.5 (-0.6) 57.9 (-0.4)

REINFORCE 78.4 59.8
w/ Expert dropout 0.1 77.2 (-1.2) 59.8 (+0.0)

SMEAR 78.7 62.0
w/ Expert dropout 0.1 82.5 (+3.8) 62.0 (+0.0)

Table 2. Performance comparision of different learned routing strategies w and w/o dropout. The results indicate that SMEAR and Top-k
method benefit from the expert dropout, while ST-Gumbel and REINFORCE are negatively affected.

E. Full results on T5-GLUE and ResNet-DomainNet
We show the full results of T5-GLUE in Table 3 and ResNet-DomainNet in Table 4.
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Table 3. Full T5-GLUE results.
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Table 4. Full ResNet-DomainNet results.
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F. Routing distribution in all routing blocks
Here we put the routing distribution in all routing blocks in both T5-GLUE and ResNet-DomainNet learnt by SMEAR in
Figure 4, Figure 5, Figure 6, and Figure 7.
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Figure 4. Routing distribution learnt by SMEAR in all routing blocks of ResNet-DomainNet



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Soft Merging of Experts with Adaptive Routing

RTE

SST2

MRPC

STSB

QQP

MNLI

QNLI

COLA

0.04 0.59 0.01 0.19 0.0 0.06 0.01 0.08

0.01 0.03 0.0 0.0 0.0 0.93 0.0 0.02

0.06 0.4 0.04 0.17 0.0 0.26 0.01 0.07

0.04 0.23 0.12 0.2 0.0 0.34 0.01 0.06

0.19 0.01 0.13 0.12 0.3 0.01 0.22 0.01

0.06 0.26 0.03 0.04 0.0 0.02 0.0 0.58

0.02 0.66 0.02 0.21 0.0 0.03 0.02 0.05

0.01 0.73 0.02 0.01 0.0 0.11 0.0 0.12

Expert Routing Block 1

0.14 0.05 0.12 0.14 0.32 0.0 0.16 0.06

0.01 0.01 0.01 0.0 0.01 0.02 0.1 0.84

0.03 0.04 0.03 0.05 0.09 0.03 0.4 0.34

0.03 0.01 0.04 0.01 0.08 0.02 0.55 0.26

0.0 0.0 0.0 0.0 0.01 0.69 0.18 0.11

0.4 0.03 0.52 0.01 0.01 0.0 0.01 0.01

0.03 0.02 0.08 0.03 0.64 0.01 0.17 0.03

0.02 0.01 0.05 0.0 0.03 0.02 0.26 0.61

Expert Routing Block 2

0.2 0.19 0.0 0.03 0.47 0.09 0.01 0.02

0.03 0.47 0.01 0.03 0.07 0.06 0.03 0.29

0.06 0.55 0.0 0.05 0.26 0.06 0.0 0.01

0.06 0.35 0.03 0.04 0.29 0.16 0.02 0.06

0.02 0.03 0.41 0.23 0.03 0.02 0.03 0.23

0.25 0.02 0.0 0.01 0.07 0.32 0.23 0.11

0.19 0.09 0.02 0.03 0.45 0.08 0.02 0.11

0.11 0.11 0.03 0.04 0.09 0.11 0.15 0.36

Expert Routing Block 3

0.07 0.37 0.43 0.01 0.0 0.09 0.02 0.01

0.05 0.1 0.11 0.04 0.1 0.07 0.04 0.48

0.03 0.34 0.51 0.01 0.01 0.05 0.04 0.02

0.08 0.34 0.27 0.04 0.07 0.07 0.06 0.06

0.01 0.1 0.04 0.01 0.34 0.01 0.44 0.04

0.34 0.01 0.08 0.21 0.01 0.33 0.01 0.01

0.01 0.54 0.37 0.0 0.0 0.04 0.03 0.0

0.18 0.15 0.09 0.1 0.13 0.11 0.05 0.19

Expert Routing Block 4

RTE

SST2

MRPC

STSB

QQP

MNLI

QNLI

COLA

0.03 0.0 0.51 0.18 0.03 0.01 0.14 0.09

0.01 0.0 0.01 0.0 0.96 0.0 0.01 0.01

0.0 0.0 0.0 0.96 0.01 0.0 0.01 0.01

0.01 0.0 0.0 0.98 0.0 0.0 0.0 0.01

0.0 0.71 0.0 0.0 0.0 0.29 0.0 0.0

0.23 0.0 0.0 0.12 0.01 0.01 0.37 0.26

0.0 0.0 0.99 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.95 0.01 0.02 0.0 0.0 0.02

Expert Routing Block 5

0.05 0.01 0.07 0.01 0.51 0.3 0.04 0.02

0.01 0.04 0.01 0.0 0.0 0.1 0.0 0.84

0.33 0.09 0.01 0.02 0.0 0.48 0.07 0.0

0.0 0.97 0.0 0.0 0.0 0.02 0.0 0.0

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

0.27 0.04 0.16 0.03 0.0 0.15 0.33 0.03

0.0 0.0 0.0 0.0 0.98 0.01 0.0 0.0

0.02 0.01 0.0 0.0 0.83 0.1 0.0 0.02

Expert Routing Block 6

0.16 0.02 0.03 0.15 0.25 0.28 0.05 0.06

0.88 0.0 0.0 0.05 0.02 0.01 0.01 0.01

0.01 0.0 0.01 0.0 0.85 0.07 0.02 0.03

0.02 0.29 0.13 0.04 0.05 0.06 0.04 0.37

0.01 0.15 0.28 0.05 0.13 0.02 0.34 0.03

0.01 0.08 0.1 0.14 0.04 0.37 0.01 0.25

0.42 0.02 0.01 0.07 0.21 0.24 0.01 0.02

0.81 0.03 0.0 0.07 0.02 0.01 0.01 0.05

Expert Routing Block 7

0.44 0.02 0.17 0.12 0.03 0.07 0.15 0.02

0.01 0.0 0.0 0.08 0.87 0.01 0.02 0.0

0.01 0.0 0.0 0.94 0.02 0.01 0.02 0.0

0.02 0.91 0.01 0.01 0.0 0.01 0.0 0.03

0.01 0.0 0.87 0.01 0.0 0.11 0.0 0.0

0.25 0.27 0.06 0.05 0.0 0.14 0.04 0.19

0.5 0.01 0.34 0.07 0.0 0.02 0.04 0.01

0.05 0.0 0.02 0.05 0.86 0.01 0.01 0.0

Expert Routing Block 8

RTE

SST2

MRPC

STSB

QQP

MNLI

QNLI

COLA

0.0 0.77 0.0 0.01 0.21 0.0 0.0 0.0

0.97 0.0 0.0 0.0 0.02 0.0 0.0 0.0

0.0 0.02 0.0 0.01 0.97 0.0 0.0 0.01

0.0 0.0 0.0 0.01 0.99 0.0 0.0 0.0

0.0 0.2 0.0 0.2 0.6 0.0 0.0 0.0

0.0 0.0 0.24 0.0 0.0 0.14 0.27 0.35

0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.8 0.0 0.2 0.0 0.0 0.0 0.0

Expert Routing Block 9

0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.99

0.0 0.0 0.99 0.0 0.0 0.01 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

Expert Routing Block 10

0.02 0.04 0.07 0.03 0.01 0.76 0.03 0.02

0.46 0.38 0.01 0.0 0.12 0.01 0.01 0.01

0.05 0.01 0.61 0.03 0.02 0.26 0.01 0.02

0.32 0.06 0.13 0.25 0.05 0.05 0.06 0.08

0.01 0.01 0.52 0.0 0.01 0.37 0.08 0.0

0.11 0.08 0.05 0.2 0.09 0.02 0.12 0.32

0.01 0.01 0.03 0.02 0.01 0.9 0.02 0.01

0.01 0.72 0.02 0.0 0.05 0.15 0.03 0.03

Expert Routing Block 11

0.0 0.04 0.0 0.62 0.0 0.0 0.34 0.0

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.14 0.06 0.0 0.8 0.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.99 0.0 0.0 0.01 0.0

0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.98

Expert Routing Block 12

RTE

SST2

MRPC

STSB

QQP

MNLI

QNLI

COLA

0.05 0.1 0.1 0.15 0.29 0.05 0.12 0.14

0.01 0.01 0.01 0.94 0.01 0.01 0.02 0.01

0.0 0.16 0.19 0.21 0.12 0.07 0.01 0.26

0.04 0.05 0.04 0.15 0.05 0.22 0.31 0.14

0.01 0.01 0.01 0.02 0.07 0.43 0.33 0.12

0.13 0.2 0.18 0.13 0.17 0.05 0.02 0.13

0.06 0.09 0.03 0.23 0.23 0.05 0.16 0.15

0.0 0.0 0.01 0.96 0.02 0.0 0.0 0.0

Expert Routing Block 13

0.0 0.2 0.0 0.0 0.03 0.0 0.78 0.0

0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.98

0.0 0.2 0.0 0.0 0.0 0.0 0.77 0.03

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

0.0 0.2 0.0 0.0 0.0 0.0 0.8 0.0

0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.92 0.0 0.0 0.0 0.0 0.08 0.0

Expert Routing Block 14

0.04 0.07 0.4 0.06 0.17 0.06 0.1 0.09

0.0 0.04 0.02 0.02 0.0 0.0 0.92 0.0

0.0 0.01 0.05 0.65 0.05 0.0 0.01 0.22

0.01 0.01 0.27 0.13 0.03 0.01 0.48 0.07

0.0 0.0 0.86 0.05 0.01 0.01 0.06 0.01

0.12 0.16 0.01 0.03 0.2 0.18 0.02 0.28

0.01 0.01 0.92 0.02 0.02 0.01 0.0 0.02

0.0 0.85 0.02 0.01 0.0 0.0 0.01 0.1

Expert Routing Block 15

0.0 0.04 0.0 0.0 0.95 0.02 0.0 0.0

0.0 0.01 0.0 0.0 0.95 0.01 0.0 0.02

0.0 0.01 0.0 0.0 0.8 0.04 0.15 0.01

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.99 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.99 0.01 0.0 0.0

0.0 0.0 0.0 0.0 0.03 0.96 0.0 0.0

Expert Routing Block 16

RTE

SST2

MRPC

STSB

QQP

MNLI

QNLI

COLA

0.11 0.02 0.11 0.03 0.35 0.05 0.1 0.21

0.02 0.34 0.51 0.01 0.02 0.06 0.03 0.01

0.05 0.01 0.05 0.01 0.01 0.01 0.63 0.24

0.52 0.05 0.07 0.01 0.13 0.08 0.01 0.12

0.13 0.02 0.01 0.0 0.35 0.16 0.0 0.33

0.1 0.15 0.17 0.13 0.03 0.13 0.07 0.24

0.01 0.0 0.02 0.01 0.58 0.04 0.03 0.3

0.01 0.02 0.06 0.01 0.78 0.09 0.03 0.01

Expert Routing Block 17

0.0 0.01 0.2 0.02 0.0 0.76 0.0 0.0

0.0 0.0 0.97 0.01 0.01 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.02 0.0 0.94 0.03 0.0 0.01 0.0 0.0

0.01 0.0 0.0 0.62 0.0 0.37 0.0 0.0

0.0 0.1 0.0 0.0 0.62 0.01 0.03 0.22

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.01 0.01 0.0 0.99 0.0 0.0

Expert Routing Block 18

0.0 0.01 0.0 0.87 0.0 0.12 0.0 0.0

0.0 0.82 0.0 0.07 0.0 0.11 0.0 0.0

0.0 0.0 0.0 0.91 0.0 0.09 0.0 0.0

0.0 0.05 0.01 0.92 0.0 0.01 0.0 0.01

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.08 0.0 0.03 0.0 0.88 0.0 0.0

Expert Routing Block 19

0.01 0.0 0.08 0.0 0.0 0.89 0.0 0.01

0.0 0.0 0.96 0.0 0.0 0.04 0.0 0.01

0.99 0.0 0.0 0.0 0.0 0.01 0.0 0.0

0.0 0.0 0.01 0.0 0.0 0.92 0.07 0.0

0.03 0.0 0.0 0.0 0.0 0.52 0.38 0.07

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.18 0.0 0.0 0.81 0.0 0.0

Expert Routing Block 20

Exp
ert

 1

Exp
ert

 2

Exp
ert

 3

Exp
ert

 4

Exp
ert

 5

Exp
ert

 6

Exp
ert

 7

Exp
ert

 8

RTE

SST2

MRPC

STSB

QQP

MNLI

QNLI

COLA

0.0 0.0 0.01 0.06 0.09 0.0 0.83 0.01

0.0 0.0 0.01 0.01 0.97 0.0 0.0 0.0

0.0 0.0 0.0 0.46 0.0 0.0 0.36 0.18

0.0 0.01 0.26 0.22 0.3 0.01 0.21 0.0

0.0 0.0 0.14 0.2 0.0 0.0 0.62 0.04

0.02 0.03 0.19 0.46 0.0 0.01 0.3 0.0

0.0 0.0 0.0 0.04 0.0 0.0 0.96 0.0

0.0 0.0 0.02 0.01 0.95 0.0 0.02 0.0

Expert Routing Block 21

Exp
ert

 1

Exp
ert

 2

Exp
ert

 3

Exp
ert

 4

Exp
ert

 5

Exp
ert

 6

Exp
ert

 7

Exp
ert

 8

0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.8

0.0 0.94 0.03 0.0 0.0 0.0 0.0 0.03

0.0 0.14 0.0 0.0 0.0 0.0 0.0 0.86

0.0 0.71 0.01 0.0 0.0 0.01 0.0 0.27

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

Expert Routing Block 22

Exp
ert

 1

Exp
ert

 2

Exp
ert

 3

Exp
ert

 4

Exp
ert

 5

Exp
ert

 6

Exp
ert

 7

Exp
ert

 8

0.0 0.0 0.74 0.0 0.0 0.0 0.26 0.0

0.0 0.4 0.57 0.0 0.0 0.0 0.04 0.0

0.0 0.0 0.22 0.0 0.0 0.0 0.77 0.0

0.0 0.0 0.87 0.0 0.0 0.0 0.13 0.0

0.0 0.0 0.75 0.0 0.0 0.0 0.25 0.0

0.0 0.0 0.98 0.0 0.0 0.0 0.02 0.0

0.0 0.0 0.74 0.0 0.0 0.0 0.26 0.0

0.0 0.0 0.03 0.0 0.0 0.48 0.49 0.0

Expert Routing Block 23

Exp
ert

 1

Exp
ert

 2

Exp
ert

 3

Exp
ert

 4

Exp
ert

 5

Exp
ert

 6

Exp
ert

 7

Exp
ert

 8

0.74 0.0 0.0 0.0 0.04 0.01 0.21 0.0

0.0 0.0 0.0 0.0 0.96 0.0 0.03 0.0

0.77 0.0 0.0 0.0 0.17 0.0 0.05 0.0

0.0 0.0 0.0 0.0 0.01 0.01 0.98 0.0

0.6 0.0 0.2 0.0 0.0 0.19 0.01 0.0

0.0 0.01 0.0 0.01 0.01 0.89 0.07 0.02

0.96 0.0 0.0 0.0 0.0 0.0 0.04 0.0

0.08 0.0 0.0 0.0 0.59 0.2 0.11 0.02

Expert Routing Block 24

Figure 5. Routing distribution learnt by SMEAR in the encoder routing blocks (1-24) of T5-GLUE
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Figure 6. Routing distribution learnt by SMEAR in the decoder routing blocks (25-48) of T5-GLUE
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Figure 7. Routing distribution learnt by SMEAR in the decoder routing blocks (49-60) of T5-GLUE


